HIGHER BSD-BLOCH-KATO-DELIGNE-BEILINSON ANALOGOUS CONJECTURES IN EPITA-TETRATICA THEORY

PU JUSTIN SCARFY YANG

ABSTRACT. This document introduces higher analogs of the Birch and Swinnerton-Dyer (BSD), Bloch-Kato, Deligne, and Beilinson Conjectures within the framework of Epita-Tetratica Theory. By generalizing zeta and *L*-functions to Epita-Tetratica functions, we establish higher conjectural frameworks relating these functions to ranks of associated modules, higher regulators, and special values.

CONTENTS

Introduction		1
Pligher BSD Analog for Epita-Tetratica Functions		1
2.1	Epita-Tetratica Ranks	1
2.2	Higher BSD Conjecture	1
Bligher Bloch-Kato Analog for Epita-Tetratica Functions		1
3.1	Higher Epita-Regulators	1
3.2	Higher Bloch-Kato Conjecture	2
Higher Deligne Analog for Epita-Tetratica Functions		2
4.1	Higher Motivic Cohomology	2
4.2	Higher Deligne Conjecture	2
Higher Beilinson Analog for Epita-Tetratica Functions		2
5.1	Higher Values and Higher Beilinson Regulator	2
5.2	Higher Beilinson Conjecture	2
Conclusion		3
References		3

1. INTRODUCTION

Classical conjectures such as the BSD, Bloch-Kato, Deligne, and Beilinson Conjectures provide deep insights into the relationship between zeta and *L*-functions and arithmetic invariants of algebraic structures. Here, we explore higher analogs of these conjectures, taking into account the recursive and layered structure of Epita-Tetratica Theory.

Date: November 5, 2024.

2. HIGHER BSD ANALOG FOR EPITA-TETRATICA FUNCTIONS

2.1. Epita-Tetratica Ranks. Define the rank of the module associated with higher epita-primes at the *n*-th layer, denoted rank_{*E_n*}, as the order of vanishing of the Epita-Zetatic function $\zeta_{E_n}^{\uparrow n}(s)$ at s = 1:

$$\operatorname{rank}_{E_n} = \operatorname{ord}_{s=1} \zeta_{E_n}^{\uparrow^n}(s).$$

This rank is conjectured to reflect properties of higher epita-primes analogous to the ranks of Mordell-Weil groups in classical BSD theory.

2.2. Higher BSD Conjecture.

Conjecture 2.2.1 (Higher BSD Conjecture for Epita-Tetratica Functions). For the Epita-Zetatic function $\zeta_{E_n}^{\uparrow^n}(s)$, the rank rank_{E_n} of the associated module of higher epita-primes is equal to the order of vanishing of $\zeta_{E_n}^{\uparrow^n}(s)$ at s = 1.

This conjecture implies that the structure of higher epita-primes within each layer is encoded in the behavior of $\zeta_{E_n}^{\uparrow^n}(s)$ at s = 1.

3. HIGHER BLOCH-KATO ANALOG FOR EPITA-TETRATICA FUNCTIONS

3.1. Higher Epita-Regulators. Define the higher regulator for Epita-Tetratica Theory as a map associated with the higher epita-primes, denoted R_{E_n} , that generalizes the classical notion of regulators in Bloch-Kato theory:

$$R_{E_n}: K_{2n}(P_{E_n}) \to \mathbb{R},$$

where $K_{2n}(P_{E_n})$ is a higher K-group associated with the *n*-th layer of epita-primes. This regulator maps elements from a K-group of the layer *n* to real values, representing "higher dimensional volume" in the Epita-Tetratica sense.

3.2. Higher Bloch-Kato Conjecture.

Conjecture 3.2.1 (Higher Bloch-Kato Conjecture for Epita-Tetratica Functions). The special values of $\zeta_{E_n}^{\uparrow^n}(s)$ at integer points are related to the higher Epita-Tetratica regulator R_{E_n} through:

$$\zeta_{E_n}^{\uparrow^n}(k) = R_{E_n} \cdot C_{E_n}(k)$$

where $C_{E_n}(k)$ is a constant depending on the *n*-th layer and the integer k.

This conjecture suggests that higher K-theoretic structures in Epita-Tetratica Theory are reflected in the special values of Epita-Zetatic functions.

4. HIGHER DELIGNE ANALOG FOR EPITA-TETRATICA FUNCTIONS

4.1. Higher Motivic Cohomology. For the *n*-th layer, define a motivic cohomology group $H^n_{\text{mot}}(P_{E_n}, \mathbb{Q}(n))$, which represents the motivic structure of epita-primes in the layer *n*. This motivic cohomology encapsulates the higher-order recursive properties of Epita-Tetratica Theory.

4.2. Higher Deligne Conjecture.

Conjecture 4.2.1 (Higher Deligne Conjecture for Epita-Tetratica Functions). For each *s*, the special values of the Epita-Tetratica L-function $L_{E_n}^{\uparrow^n}(s)$ are related to the motivic cohomology $H_{mot}^n(P_{E_n}, \mathbb{Q}(n))$:

$$L_{E_n}^{\uparrow^n}(s) \sim \operatorname{Reg}_{E_n} \cdot \prod_{p \in P_{E_n}} e^{(p \uparrow^n s)}$$

where Reg_{E_n} is the Epita-Tetratica regulator for the motivic cohomology.

This conjecture proposes that the motivic structure of higher epita-primes influences the special values of Epita-Tetratica *L*-functions, mirroring classical motivic conjectures.

5. HIGHER BEILINSON ANALOG FOR EPITA-TETRATICA FUNCTIONS

5.1. Higher Values and Higher Beilinson Regulator. Define the higher Beilinson regulator B_{E_n} in Epita-Tetratica Theory as an integration over the *n*-arrow structure:

$$B_{E_n}(s) = \int_{P_{E_n}} \zeta_{E_n}^{\uparrow^n}(s) \, d\mu_{E_n},$$

where $d\mu_{E_n}$ represents a measure on higher epita-primes in layer n.

5.2. Higher Beilinson Conjecture.

Conjecture 5.2.1 (Higher Beilinson Conjecture for Epita-Tetratica Functions). The higher Beilinson regulator $B_{E_n}(s)$ is related to the values of the Epita-Zetatic function $\zeta_{E_n}^{\uparrow^n}(s)$ at special integers through:

$$\zeta_{E_n}^{\uparrow^n}(s) = B_{E_n}(s) \cdot D_{E_n}(s),$$

where $D_{E_n}(s)$ is a function reflecting the distribution density of higher epita-primes.

This conjecture suggests that integrals of Epita-Zetatic functions over higher epita-prime distributions encode fundamental arithmetic invariants.

6. CONCLUSION

The higher analogs of BSD, Bloch-Kato, Deligne, and Beilinson Conjectures in Epita-Tetratica Theory open the possibility of deeper connections between higher epita-primes and algebraic structures at each recursive layer. Future work includes exploring the computational and theoretical implications of these higher conjectures.

7. References

REFERENCES

- [1] Knuth, D. E., The Art of Computer Programming, Vol. 1-4. Addison-Wesley, 1968-2011.
- [2] Titchmarsh, E. C., The Theory of the Riemann Zeta-Function. Oxford University Press, 1986.
- [3] Bloch, S. and Kato, K., *L-functions and Tamagawa numbers of motives*. In The Grothendieck Festschrift, Vol. I, 333–400, 1990.
- [4] Beilinson, A., Higher regulators and values of L-functions. Current Problems in Mathematics, 1985.
- [5] Deligne, P., Valeurs de fonctions L et périodes d'intégrales. Proceedings of Symposia in Pure Mathematics, 1982.